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remains an area for future work. ." ..v

%/0

A -O

SECURITY CLASSIICATiOW OP ?M* PAOE(WRB. ,l Enerd)



1. INTRODUCTION

Let Y { {Y(t) t > O} be a real-valued stochastic process

representing the output of a simulation. To incorporate stochastic

sequences {Yn n > O} into our framework, we set Y(t) Yt] where

It] is the greatest integer less than or equal to t. Frequently, a

simulator is interested in estimating steady-state parameters associated

with Y. Recently, SCHRUBEN (1983) proposed a new class of procedures,

based on standardized time series, for dealing with the steady-state

simulation problem. Our goal, in this paper is to generalize the method of

standardized time series and to study the structure of such procedures.

Section 2 reviews the basic concepts of weak convergence upon which the

method of standardized time series is based.

In Section 3 the method of standardized time series is introduced and

its basic properties are investigated. Section 4 gives examples of

standardized times series, while Section 5 discusses the asymptotic

behavior of the method. Section 6 provides a short summary of the major

results of this paper.

2. WEAK CONVERGENCE OF STOCHASTIC PROCESSES

Let X - {Xn  n > 1} be a sequence of real-valued random variables

(RV's). The sequence X is said to converge weakly to a r.v. X

(written X -0 X as n + -) if
n

(2.1) P{X < x} P(X < x}

n-
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as n + =, for every x which is a continuity point of P{X < .}. This

mode of convergence is frequently used in the study of simulation output

analysis algorithms. For example, the central limit theorem (CLT) is a

weak convergence statement concerning a sequence of normalized partial

sums.

It is well known (see, for example, Theorem 4.4.2 of CIUNG (1974))

that the requirement (2.1) is equivalent to demanding that

(2.2) Ef(X) * Ef(X)n

as n + =, for every bounded, continuous function f R * R.

The method of standardized time series requires that one study weak

convergence properties of random elements X corresponding to stochastic
n

processes. Since a stochastic process may be regarded as a random

function, it is natural to generalize to the case where the K 's take

values in a function space. The precise space that we shall require is

C[0,1J, the elements of which are continuous functions x [0,1] + R;

see p. 54-61 of BILLINGSLEY (1968) for a thorough description of this

space.

As (2.2) indicates, the notion of weak convergence depends upon

defining a suitable class of continuous functions. For x,y e C[0,1, let

P(x,y) - sup{Ix(t) - y(t): 0 < t < 1}

p(x,y) measures the distance between the two elements x,y.

2
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(2.3) DEFINITION. A function f C[0,1] * R is said to be continuous

if f(xn ) n f(x) as n * w, whenever p(x , x) * 0 as n *w, where the

x's and x are elements of C[0,1.n

By analogy with (2.2), we can now define a notion of weak convergence

on C[0,11. Let {X : n > 1} be a sequence of random elements taking
n

values in C[0,1] (in other words, the X 's correspond to stochastic
n

processes with sample paths in C[0,1]). If X is a random element of

C[0,1J, then {X n > 1} is said to converge weakly to X (written
n

x -x) if
n

(2.4) Ef(X ) * Ef(X)
n

as n - , for every bounded, continuous function f C[0,1I R.

The method of standardized time series is based on the following

important result, known as the continuous mapping theorem (CMT). For a

(measurable) function h : C[O,1J + R, let D(h) be the set of elements

x e C[0,11 at which h is discontinuous (in other words, x D(h) if

there exists a sequence {x } c C[0,11 for which p(x , x) * 0 as n ,
n n

with f(x ) i f(x)).
n

(2.5) PROPOSITION. Suppose X , X are random elements of C[0,1] such
n

that X - X as n * . If P{X c D(h)} = 0, then h(X ) - h(X) as
n n

n *~

3



See p. 31 of [11 for a proof of this result. Loosely speaking,

Proposition 2.5 says that if X can be weakly approximated by X, then

the real-valued random variable h(X ) can be weakly approximated, inn

distribution, by h(X), provided that h is suitably continuous. To be of

practical benefit, of course, it is also necessary to choose h's for

which the distribution of h(X) is known.

3. STANDARDIZED TIME SERIES

Let Y {Y(t) : t > 0} be a real-valued (masurable) stochastic

process representing the output of a simulation. To apply the method of

standardized time series to the output process Y, it is necessary to make

the following assumption:

(3.1) There exist finite constants 4 and a (a positive) such that

X =0 aB "
n

as n + , where B is a standard Brownian motion, and
I

X (t) - n / 2 (Y (t) -t)
n n

with
nt

(t) f "Y(s)ds/n , for 0 < t < 1
n 0

Note that X and B are both processes whose sample paths lie in
n

C[0,1], so that the weak convergence required by (3.1) is assumed to take

place in the function space C[0,11. A variety of different output

processes satisfy (3.1).

i



(3.2) PROPOSITION. Let Y be a stationary (measurable) t-mixing

process (see p. 178 of [1] for a definition) satisfying:

.) EY 2(0) <

1 . $/2(tdt < -

0

(iii) f cov(Y(O), Y(t))dt > 0
0

2

Then, (3.1) holds with = EY(0) and a = 2 f cov(Y(O), Y(t))dt.

0
For a proof, see p. 178-179, as well as a remark on p. 150, of [1]

(for extensions to non-stationary processes, see p. 179-182 of [11).

(3.3) PROPOSITION. Let Y(t) - Y where {Yn : n > 0} is a

strongly mixing, strictly stationary sequence (see HALL and HEYDE (1980)

for a definition) satisfying:

(i) EIY 0
12+ 6 <

(ii) a a(n) 6 / (2+6) <
n-0

(iii) E(Y0-r)
2 + 2 E(Yo-r) (Y -r) > 0,

k-I

where r - EY0 ; 6 > 0, and {a(n) n > O} is the sequence of mixing
constants. Then, (3.1) holds with = r and 2 E(Yor) + 2

E(Y -r)(Y -r). 2

5



For a proof, see p. 132 of [8].

(3.4) PROPOSITION. Let Y(t) - w , here (Y n > 0} is an

associated sequence of strictly stationary r.v. 's (see NEWMAN and WRIGHT

(1981) for definitions) satisfying:

Wi Y is a non-degenerate r.v.
0

(ii) E(Y0-r0 (Y k-r) < -, where r EY 0

Then, (3.1) holds with 4 r and a k-I_0 + EY -r)(Y _r).

For a proof, see [101.

(3.5) PROPOSITION. Let Y be a (possibly) delayed regenerative process

with regeneration times 0 < T(Q) < T(1) < T(2) < .Set

T(n)
y Mf - f f(Y(s))ds

T(n-I)

- T(n) - T(n-1)
n

and assume that:

Ci) E(Y(Ifl)2 + (2

(ii) E(Y Mf - rT 1) > 0, where r -EY (f)/Er

2 2
Then, (3.1) holds with .i r and a -ECY Mf ri- /ETr

6



For a proof, see FREEDMAN (1967) (the argument given there for the

Markov chain case easily extends to the general regenerative setting).

Let h : C[0,1] + R be the mapping defined by h(x) - x(1); in other

words, h evaluates x at the point t - 1. It is trivially verified that

h(x ) h(x) whenever P(x nX) * 0 as n + . Hence, Proposition 2.5

implies that

X (1) -a aB(1)
n

or
1/2

(3.6) n (i(n) - ) iB(1)

as n + . Application of a standard converging-together argument (see p.

93 of CHUNG [4,) yields

(3.7) PROPOSITION. Assumption (3.1) guarantees that

y(n) -~

as n c.I

Thus, (3.1) suffices to guarantee that the steady-state estimation

problem for Y makes sense; i is the steady-state parameter which the

simulator wishes to estimate.

Note that the CLT (3.6) could be used to obtain confidence intervals

for 4, provided that a were known. As Schruben points out in [121, the

principle underlying standardized time series is to "cancel out" the a.

The cancellation procedure involves choosing a function g from the

class _3f; _ is the class of (measurable) functions g C[0,1] - R

such that:

7



(3.8) i) g( ax) = qg(x) for a > 0, x E C[0,1I, I
(ii) g(x - Pk) - g(x) for P 6 R and x c C[0,1I, where

k(t) t,

(iii) P{g(B) > 0} = 1,

(iv) P{B E D(g)} = 0.

(3.9) THEOREM. Suppose that g c JW. Under Assumption (3.1),

S(1) -
(3.10) n B(1) as n

g( ) g(B)
n

FROOF. Let h C[0,11 - R be the mapping defined by h(x) = x(1)/g(x)

for g(x) # 0 (and zero elsewhere). Assumptions (3.8iii) and (3.8iv)

allow one to verify that P{fB E D(h)} = 0. Thus, Proposition 2.5

guarantees that

h(X ) = h(aB)
n

2

as n + . By (3.8i), h(oB) = B(1)/g(B) (recall that a > 0).

Furthermore,

1/2
n (Y (1) -h(Xn) -- /(n

hXn 1/2- -k)
g(n - k4)

Y n 1) -

g(Yn - kp.)

n
= Yn(1) - p

g(Y)

8



For the second step, observe that the symmetry of H proves that

H(z(g; 1-6/2)) - H(-z(g; 1-5/2)) 1-6. Set b = z(g; 1-5/2). Then, for

any ax e F, (5.5) yields

H(cr+2b) - H( a) < 1-5

Thus, in order that H(93) -H(a) = 1-6, it must be that fP-a > 2b; proving

our assertion.

We turn now to the choice of g E -T . Our goal is to find g

minimizing

(5.6) sb(g) -Eg(B) * z(g; 1-8/2)

Note that the criterion (5.6) is scale-invariant.

(5.7) LEMM. For b > 0, 6(bg) =-~)

PROOF. Note that z(g; 1-5/2) solves

1 6/2 P{B(I) < z(g; 1-'12) *(

P{B( 1) K;z(g; 1-V/2) * b * g(B) }

P{B(1) < z(bg; 1-5/2) * b *g(B)I

so that the continuity and strict monotonicity of H imply that

z(gb; 1-6/2) -z(g; 1-5/2)
b

Relation (5.6) then yields the lemma.

22



17~~rn r r rr r- w-- r. V KWM'7 :

Clearly, it is desirable to obtain confidence intervals with as small

an expected length as possible. From Proposition 5.1, it seems reasonable

to therefore choose a, 8, and g such that Eg(B) • (0-a) is

minimized.

(5.3) PROPOSITION. Suppose g - 5N. Then, for a 100(-6)% confidence

interval, 0-a is minimized by choosing

z(g; I - 6/2)

a -f

where z(g; x) solves the equation H(z(g; x)) = P{B(I)/g(B) < z(g; x)} = x

(in other words, the confidence interval should be centered at Y (I)).
n

PROOF. We proceed in two steps. First, for any a e JR and b,y > 0, it

is easily verified that

(5.4) D((a+2b)y) - Z(ay) < D(by) - (- by)

Integrating both sides of (5.4) with respect to G(dy) and using (3.14),

we get

(5.5) H(a+2b) - H(a) < H(b) - H(-b)

Furthermore, the symmetry of (' and (3.14) implies that H is also

symmetric, in the sense that H(b) - H(O) = H(O) - H(-b) for b > 0.

21



(5.1) PROPOSITION. Assume g -s , and that (3.1) holds.

(a) If g is non-negative, then

1/2
lim n EL > /Eg(B) • (s-a)~n-

n +

(b) If (g(X) n . 1} is uniformly integrable, then

1/2
lim n L n= Eg(B) •(-a)n

n - a

Assumption (3.1) and Proposition 2.5 guarantee that if g c 5k, then

(5.2) g(X ) -0 ag(B) ,n

as n + o. If g is non-negative, then Fatou's lemma can be applied to

(5.2) to conclude that

Eg(B) < lim Eg(X n
n + c

proving (a). On the other hand, it is well-known (see CHUNG (1974), p. 96)

that uniform integrability implies that

Eg(B) = lim Eg(X )
n

proving (b).

20



(4.10) EXAMPLE. Let b C[0,1J * R be defined by

b(x) =x(t*)(t*(-t*))

where t* - inf{t > 0 : x(t*) = M*}, M* = max{x(t) : 0 < t < 1}. SCHRUBEN

(1982) showed that (b 2oF)(B) has a chi-square distribution with 3 degrees

of freedom. Consequently,

M i (B) •(_2 ) /2

so that

B(1)

m (B) t 3m

where t3m is a Student's-t RV with 3m degrees of freedom. Confidence

intervals based on g (B) as defined above are the standardized ximam

intervals of [12J.

5. ASYMPTOTICS FOR STANDARDIZED CONFIDENCE INTERVALS

In this section, we study certain asymptotic properties of standard-

ized confidence intervals. In particular, we consider the asymptotics of

the expected length of such conf-idence intervals, as well as the end-point

variability of these intervals.

Now, from (3.15), it is clear that the width of the interval (3.15) is

given by

L g(Y ) (9-a)
n 1

19



m-I1 1/21/
vT~ rn- 2 1/2

V1mg(B) B ( B(1)) (1/
i=O

where Xm denotes a chi-square RV with m degrees of freedom. The

chi-square property of g (B) makes standardized time series based on

g particularly attractive, since in that case

B(1)

(12m)I/2 g (B) m

where t is the Student's-t distribution with m degrees of freedom; the
M

limit Theorem (3.10) can then be used to construct confidence intervals for

4. These confidence intervals, which were suggested by SCHRUBEN (1983),

are based on the so-called standardized sum process (Y (1) -)/(12m)n

g (Yn(')).m n

(4.9) E AMPLE. The map b C[0,1J * R defined by

I
b(x) - f Ix(t)l dt

0

also lies in the class J. Furthermore, the distribution of (bol)(B)

is known; see JOHNSON and KILLEEN (1983). However, the distributions of

both gm(B) and gm(B) are quite complicated, and this would appear

to limit the applicability of this method.

18



To calculate the distribution of gm(B) and i (B), it is convenient

to first find the distribution of (bor)(B). Note that the continuity of

B implies that

(4.8) m (PB)(i/m) + f (rB)(t)dt

0

as m * =, a.s. The left-hand side of (4.8) is normally distributed with

mean zero and variance

m m

21 1covfrr)(k/m>, (rB>(1/m>]
m kul 1-1

mm m k k
~~Fro,.<,, -2-,<.)

m2 k1 I.=1 m

Note that v(m) is a Riemann approximation to the integral

I I

f f [min(s,t) - stids dt
0 0

which has value 1/12. Thus, v(m) + 1/12; hence, taking characteristic

functions of both sides of (4.8) shows that the right-hand side of (4.8) is

normally distributed with mean-zero and variance 1/12. Since A B,
D

AB are independent Brownian motions, it follows that
M-I

vTg*(B) - l Ii(l>l
i-O

in-Iwhere B D , ... m I  are independent standard Brownian motions; on the

other hand,

17
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intervals converge to those associated with a normal approximation. This

phenomenon is consistent with that observed in the method of batch means,

where it is known that as m =, the Student's-t distribution approaches

a normal.

A second "extension" method involves defining the class

2
572 = {b 5 : P{B C D(b )} =

where b 2(x) - b(x) • b(x). The following proposition has a proof similar

to that of Proposition 4.2.

(4.5) PROPOSITION. If b (E 7 2' then g 5 k(m > 1), where

m- /2
gm= ( b2 orAi) "

i=o

The analogue to Proposition 4.4 is then given by

(4.6) PROPOSITION. g(B =( (E(b2 ro))/2 as m .

Thus, confidence intervals based on g( .) will, for large m,

correspond to that associated with a normal approximation. We now turn to

some specific examples of gm's and gm's.

(4.7) IAMPLE. Let b C[0,1I I be defined by

S1

b(x) -If x(t)dtl
0

16
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* 1/2

(4.4) PROPOSITION. g (B)/m -0 E(bal'oB) as m-

PROOF. Note that

S 12 ~ ml1 1/2
1/2I 1 0 ~r(m A B)

1-0

1/2
But (m A.B 0 < i < m) has the same distribution as a collection of m

1

independent standard Brownian motions (B 1 0 < i < m), so

i 1

g* (B)/m 1/2 b in 1
m i oo

1=0

QT( denotes equality in distribution). Of course, the strong law of large

numbers guarantees that

in-I
m i~ bol'eB1  E~boroB) a.s.

as m + ~ proving the result.

Thus, if E(boroB) < ~ we observe that

n________ m" 2 B(l)

/E~br*B) g (B)/E(bo FoB)

as n ~ ,where the limit RV, for large in, is the normally distributed

0 quantity B(1). Hence, as the method of standardized time series is

extended to more and more increments, the corresponding confidence

15



(4.3) =, roA 1

Ti M1io

* It is evident from (4.3) that

so that if

b j bo~~im n m

we have a representation of g mof the form g m b mor.

Clearly, b satisfies (3.11i). For (3.11ii), observe that A B is a
m

Brownian motion so (3.1111) implies that (boT'oA )(B) > 0 a.s. for

0 < i < m, thus yielding (3.1iii) for b

For (3.11iii), note that the continuity of Ai implies that

* rn-i

D(g )C U (x Aix D(b-F)}
m i=-a

so that

P{B £D(g) < I P{A B8 D(bofl)}

* -But A B is a Brownian motion so that (3.11111) shows that
i

P{A B 6 D(bafl - 0 for 0 < i < m, yielding (3.1li11) for gm.

UIt is of some interest to consider the behavior of g (B) for large m.

14



As we have already seen, the fundamental assumption of the method of

standardized time series is that the output process may be approximated by

a Brownian motion. Intuitively, then, it should follows that the

increments of the output process can be approximated by the increments of

Brownian motion. This suggests that one might try to extend the power of

the method of standardized time series by applying the procedure separately

to each increment of the output process, and then "patching" the increments

together. In some sense, this phenomenon occurs in the method of batch

means, and is related to the somewhat arbitrary nature of the parameter

m. In any case, we now present two "extension" methods.

Let Ai: C[0,1I C[0,11 be the map defined by

(A x)(t) x((i+t)/m) - x(i/m) , 0 < t < I
i

for 0 < i < m (m > 1); the key to our first "extension" procedure is the

following result.

(4.2) PROPOSITION. If b c f, then gm c% (m > I), where

, m-m

gm"i bor°Ai"i=O

PROOF. We shall show g can be represented as gm - bmof, where

,

b c 2?, thereby proving that gm c M*" Let Ti C[0,11 * C[0,I] be
m i

given by

(ix)(t)= x((i+t)/m) - x(i/m)(1-t) - tx((i+l)/m)

9i
for 0 < t < 1 (0 < i < m). The following relations are easily verified:

13
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gm(x) m (A mx(i/rn) -x(I)/rn)21/

where A x(t) x(t) -x(t - /h). Note that A B(i/rn) (i1 1, .. ,m)

h m

are increments of standard Brownian motion, and are therefore independent

and identically distributed normal RV's with mean zero and variance 1/rn.

Also, B(1)/m is the sample mean of these increments. Hence B(1)/g (B)
rn

has a Student's-t distribution with mn-1 degrees of freedom.

On the other hand,

g (Y )=m-12 [-- 1 (z (n) I Zrnn)1/

where n1=

in/rn
Z (n) =f Y(s)ds/(n/n)

i (i-1)n/rn

is the i'th batch mean of the process (Y~t) 0 < t < n}. Specializing

Theorem 3.9 to our example therefore allows us to conclude that

i=1 Z n (Z (n) Z- Z Z(n)) 2 1/2  t
mi Mi = j=1 *j r-I

as n + -, where t M is a Student 's-t RV with rn-i degrees of

freedom. To summarize, we have just shown that the method of batch mneans,

with the number of batches fixed at mn > 2, is asymptotically valid under

condition (3.1). This result complements a similar theorem due to

BRILLINGER (1973).

12



P((Yn(1)- )/g(Yn) < x1 * H(x)

as n + for all x c R. Hence, to obtain a 100(1-6)% confidence

interval, one selects a and 0 such that H(R) - H(a) - 1-6 (such a,B

exist since H(.) is continuous; also, (3.14) implies that H(.) is

strictly increasing). Then, the interval

(3.15) (1) - g(yn ), yn(1) - g(Yn)a]

is an asymptotic 100(1-5)% confidence interval for .

The process (Y - *)/g(y ) is called a standardized timen n

series. Theorem 3.9 and Proposition 3.12 show that every b c T gives

rise to a particular standardized time series procedure; (3.15) is then the

corresponding confidence interval for 4.

4. EXAMPLES OF STANDARDIZED TIME SERIES

Our first example of a standardized time series captures a methodology

which has been extensively studied in the simulation literature, namely the

method of batch means.

(4.1) EXAMPLE. Let b C[0,1] * R be defined by
m

m 2) 11/2bm) W [(Mi W i/m) -X((i-l)/m)) 2 ]/
m i-1

for m > 2. It is easily verified that b o 5 ' so that g b or
m m m

(see Proposition 3.12). But

i> .' 11

• 'S

bb ".

*,. . . .



k -

(mx-pk))(t) =x(t) - k(t) -t(x(l) - k(l))

=x(t) - x(Z) =(rx)(t)

so r(x-Ok) r Px; hence, g(x-Ok) - g(x).

To prove that c A*, consider g c. We claim that g can be

represented in the form g - bor, by setting b - g. Recall that g(x)

g(x-ok) for all 0 c R. In particular, setting x(l), we see that

g(x) - g(rx), proving our assertion.

We can now obtain the following result.

(3.13) PROPOSITION. If g c 5, then B(1) is independent of g(B).

PROOF. It is well known that the process B(t) - tB(1) (0 < t < 1) is

independent of B(1) (see p. 84 of [I1, for example). In other words, PB

is independent of B(1), which, of course, implies that g(B) = (bor)(B)

is independent of B(1).

Let V(x) - P{B(1) < x}, G(x) - P(g(B) < x}, and H(x) - P(B(1)/g(B) < x}.

Then,

(3.14) H(x) - f D(xy) G(dy)
0

by Proposition (3.13). The continuity of (.) and the bounded

convergence theorem imply that the right-hand side of (3.14) is continuous

everywhere in x. Thus, by (2.1) and (3.10), it follows that under the

conditions of (3.1),

to



where the last equality is due to (3.811). These observations immediately

yield the theorem.

The proof clearly indicates the role of Assumption (3.8ii); this

condition guarantees that g(X )does not depend on the unknown parameter
n

To construct confidence intervals based on (3.10), we need to learn

more about the limit RV B(1)/g(B). We start by obtaining an alternative

description of 51.Let r C[0,1J - C[0,11 be the map define by

0r)t ~t xi

Le t 7 be the class of functions b C[0,1J R which satisfy:

(3.11) (i) b(crx) ab(x) for a > 0, x e C[0,11,

(ii) P{(boP)(B) > 01 =1,

(iii) P{B D(bor)} 0.

Set J51* = (g : g =boP, b E91

(3.12) PROPOSITION. M

PROOF. We first show that 3 .1.Suppose that g -bof, where

b e T1. Clearly, g satisfies (3.8i), (3.8iii), and (3.8iv). For (3.8ii),

observe that

9



(5.8) THEOW(. Suppose g c .. Then

*s(g) > t 1¢1-6/2)

where c- is the inverse of the normal cumulative distribution function

PROOF. By Lemma 5.7, we may scale g so that

z(g; 1-6/2) 1

Now, (5.9) implies that

H(1) 1 1-6/2

or

f V(y) G (dy) 1-6/2
0g

where G (dy) P{g(B) -E dy} (see (3.12)). Thus, we are to show that
g

(5.10) 0(g) - Eg(B) • z(g; 1-6/2)

=f (0- Gg(y))dy >17-I(-6/2)

0

subject to

(5.11) f D(y) G (dy) 1 1-6/2
0 g

Integrating by parts, we find that

23
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f (y) G (dy) =['(y) Gg(y)]o + f Gg(y) ¢(y)dy00

f (y) *(y)dy
O g

where G (y) I - G (y) and 4(y) is the normal density function.
g g

Let K(y) be the distribution function defined by

0; y<p
K(y) { {

1; y>p

where p = -(1-6/2). Note that

f K(y) *(y)dy 1 1-6/2
0

and

f K(y)dy p ,

0

where K(y) I - K(y). Thus, we can reformulate (5.10) and (5.11) as:

show that

0

subject to

(5.13) f (5 (y) - K(y)) t(y)dy = 0
0 g

Since s is strictly decreasing on [0,-), and because

24
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Gg(y) K(y) < 0 for y <p

Gg(y) K(y) >O for y >p

it follows that

p p
(5.14) f (G (y) -K(y))dy .$'(p) > f (G (y) -K(y)) 4(y)dy

and

(5.15) f (G (y) -K(y))dy * (p) > f (-G (y) -K(y)) 0(y)dy
g g

Adding (5.14) and (5.15) together, we get

f (G (y) -K(y))dy 0 4(p) > f (G (y) -K(y)) *(y)dy
g g

Relation (5.13) then yields (5.12).

(5.16) COROLLARY. Suppose g c ~ is non-negative. Under Assumption

This corollary follows immediately from Propositions 5.1 and 5.3, and

Theorem 5.8. The lower bound of Corollary 5.16 has an important

interpretation. Consider a steady-state simulation.-output analysis

algorithm which is based on constructing an estimator s which
n

consistently estimates a:

25



(5.17) n a,n

as n - m. Among the algorithms of this type are the regenerative method

of simulation, spectral methods, and autoregressive procedures (see

Chapter 3 of BRATLEY, FOX and SCHRAGE (1983) for a description of these

techniques). The following proposition is a straightforward application of

the converging-together lemma (see p. 25 of [11).

(5.18) PROPOSITION. If s is an estimator satisfying (5.17), then
n

(3.1) implies that

1/2
(5.19) n (Y ) )/s B(1)

n n

as n +*.

The weak convergence result (5.19) permits construction of asymptotic

100(1-6)% confidence intervals for i:

s s

(5.20) Yn (1) - z(6) 02, Yn( 1)  n a(6) 1/21
n n

where z(6) - c-I(1-6/2). If L is the length of the iiterval (5.20), it
n

is clear that as n ,

(5.21) n 1 / 2 L 1 2 (1-6/2)

n

which is precisely the lower bound of Corollary 5.16. If {sn; n > 1} is

uniformly integrable (conditions guaranteeing this appear in GLYNN and

IGLEHART (1985b), Section 6), then we further have that

26
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1/2 -l(5.22) lim n EL - 2a 0 (1-6/2)nn

Corollary 5.16, and the limit theorems (5.21) and (5.22) suggest that,

from the viewpoint of expected confidence interval length, output analysis

methods which consistently estimate a dominate standardized time series

procedures asymptotically.

One further point, pertinent to expected confidence interval length,

remains to be investigated. The examples of Section 4 show that for any

k > I, there exists gk e W such that B(1)/gk(B) has a Student's-t

distribution with k degrees of freedom. If gk(Xn) is uniformly

integrable, then it follows that if L (k) is the length of such an

confidence interval,

1/2 -1i_/2
lim n EL (k) 2a Hk (1-6/2)
nn

where H l(p) is the pth quantile of a Student's-t with k degrees of

freedom. Since

lim Hk (1-6/2) = (1-6/2)
k +

this discussion suggests that

1/2 -

(5.23) inf lim n EL 2a ¢-'(1-6/2)
ng e..A n -

27
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thus, the lower bound of Corollary 5.16 is tight. Relation (5.23) raises

the question of whether there exists g c A such that

1/2 -
(5.24) lim n EL a 2a 171(1-6/2)

n
n

in other words, is the lower bound attained within 5W?

A glance at the proof of Theorem 5.8 shows that

s(g) > i-(1-6/2)

unless G (dy) is a point-mass distribution. Thus, in order to find

g c satisfying (5.24), it must be that

(5.25) P{g(aB) a} 1 1

for some a > 0. Our next result shows that such a g cannot exist.

(5.26) PROPOSITION. There exists no g c . such that (5.25) holds.

PROOF. We will prove something stronger: the requirements

P{B c D(g)} - 0 and (5.25) are incompatible. We start by showing that for

every x c C0 [0,11 {x £ C[0,11 : x(O) O} and e > 0,

(5.27) P{p(cB, x) < e} > 0

To see this, fix x c C0 [0,1] and 6 > 0. Since (0,1] is compact, x is

uniformly continuous on [0,11, so there exists N - N(E) such that
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(5.28) Ix(t) - x(k/N)l < ./4

for kN < t < (k+l)/N, where 0 < k < N. Now, the independent increments

of Brownian motion imply that if Az(k/N) z((k+l)/N) - z(k/N), then

(5.29) P(A(E)) S P{jacAB(k/N) - Ax(k/N)I < E/4N,

max IB(t) -B(k/N)I < E/2, 0 < k < NJkl N<t<(k+ ) IN

N-I
R P{a.B(k/N) - Ax(kIN) l < E/4N,

k-O

a max IB(t) - B(k/N)( < e12 } > 0 ,
k/N<t<(k+l )/N

by virtue of the fact that for any z with IzI < n, P(IB(t) - zj ( ,

maxo<< t IB(s)l < 2n} > 0. Now, on the event A(e), a simple triangle

inequality argument shows that

JaB(t) - x(t)f < .

for 0 < t < I (use (5.28)), proving (5.27).

From (5.27) and (5.25), it follows that for some a > 0

P{p(aB,x) < E, g(aB) a ao) > 0

so that there necessarily exists y y(xc) such that P(y,x) < c with

g(y) - ac. Thus, the range of g over any c-neighborhood of x contains

the set {c: a > 0); clearly, then g can not be continuous at x.

29
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Hence, x e D(g). Since x was arbitrary, this implies that D(g) -

C 0[0,1], violating the assumption P(B c D(g)} 0.

We now turn to the question of end-point variability. To be precise,

observe that if g E 5W, then (3.1) implies that

(5.30) n1 2 L a ag(B) •
n

as n (see (5.2) for a more complete argument). The limit distribu-

tion of the confidence interval length is, of course, degenerate if (and

only if) g(B) is degenerate. Suppose that, in fact, g(B) is degenerate

so that there exists a such that P{g(B) - a} - 1. Note that a > 0 by

(3.81ii). On the other hand, it follows from (3.81) that

(5.31) P(g(aB) =aa} I

for all a > 0. But (5.31) is, of course, just (5.25); Proposition 5.26

therefore proves that no such g can exist. Consequently, we may conclude

that g(B) must be non-degenerate. The limit theorem (5.30) therefore

states that L exhibits non-degenerate random fluctuations of order
n

1/2
n-

Another way to quantify the above phenomenon is to examine the

quantity E(L - EL n)2

(5.32) PROPOSITION. If (g 2(Xn): n > I} is uniformly integrable, then

under (3.1),

30
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(5.33) lim nE(L n - ELn)2 a 2E(g(B) - Eg(B)) (a)2
n ccm

provided g e . Furthermore, the right-hand side of (5.33) is positive.

PROOF. The uniform integrability of {g 2(Xn): n > 1) implies that of

{g(Xn): n > 1} (see p. 100 of [4]), so

i n 2 Eg(Y n) lim Eg(X n) n Eg(B)
n+c n n

and

2 2 2lim n Eg (Y n) iim Eg (Xn ) - Eg (B)n + n

combining the above two limit relations yields (5.33). As for the

positivity, this follows from the non-degeneracy of g(B) for g C A.

We now wish to compare the end-point variability of standardized time

series procedures to that obtained via methods which consistently estimate

a. Our analysis will be restricted to the regenerative method of

simulation; we do this only because the required limit theorems are

available in this context.

As (5.21) indicates, n1/ 2 Ln  converges to a dtgenerate r.v. Thus,

-1/2L asymptotically exhibits no random fluctuations of order n . Wen

can, in fact, be more precise.

(5.34) PROPOSITION. Let Y be a regenerative process satisfying

E((YlIfl) 9 + i9) < (see (3.3) for the definition of Yn(Ifl) and

T ). Then, if a is the regenerative estimator for a, there existsn

such that

31



(5.35) i) n(L - EL ) -0 nN(O,1) as n +n n

(ii) nE(L - EL )2 + as n + .n n

PROOF. Under the above moment hypothesis, there exists K such that

n/2(s(5.36) n (s-a) =' ,cN(0,1),
n

as n cm n; furthermore, the sequence {n(sn-3)) n > } is uniformly

integrable (see Sections 5 and 6 of [7). Thus,

(5.37) nE(L - + 0z()I
n I/2 -1n

as n * m; combining (5.36) and (5.37), we get (5.35i). For (ii), we use

the uniform integrabiliry to obtain

32

nE(sn-a) * 2;

this evidently implies that

n2E(L - EL )2 * 4z2(5) 2
n n

proving (ii).

We conclude that the end-point variability of the regenerative

-1 -1/2
confidence interval is of order n , as opposed to n for

standardized time series.
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6. SUMMARY

Building on work of SCHRUBEN, we have developed a general framework

for the analysis of standardized time series. Under mild assumptions on

the output process (see (3.1)), the method of standardized time series

produces asymptotically valid confidence intevals for steady-state

parameters. However, these intervals are asymptotically larger (see

(5.16)) and more variable (see (5.33)) then those steady-state intervals

obtained by a method which consistently estimates the appropriate steady-

state variance constant (such as the regenerateive method). In this sense,

standardized time series confidence intervals are asymptotically less

desirable then those constructed by a consistent estimation.

These results do not, however, preclude the possibility that standard-

ized times series may be superior in certain small sample context; this

remains an area for future work.
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